skip to main content


Search for: All records

Creators/Authors contains: "Bullock, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The radial acceleration relation (RAR) connects the total gravitational acceleration of a galaxy at a given radius, atot(r), with that accounted for by baryons at the same radius, abar(r). The shape and tightness of the RAR for rotationally-supported galaxies have characteristics in line with MOdified Newtonian Dynamics (MOND) and can also arise within the cosmological constant + cold dark matter (ΛCDM) paradigm. We use zoom simulations of 20 galaxies with stellar masses of M⋆ ≃ 107–11 M⊙ to study the RAR in the FIRE-2 simulations. We highlight the existence of simulated galaxies with non-monotonic RAR tracks that ‘hook’ down from the average relation. These hooks are challenging to explain in Modified Inertia theories of MOND, but naturally arise in all of our ΛCDM-simulated galaxies that are dark-matter dominated at small radii and have feedback-induced cores in their dark matter haloes. We show, analytically and numerically, that downward hooks are expected in such cored haloes because they have non-monotonic acceleration profiles. We also extend the relation to accelerations below those traced by disc galaxy rotation curves. In this regime, our simulations exhibit ‘bends’ off of the MOND-inspired extrapolation of the RAR, which, at large radii, approach atot ≈ abar/fb, where fb is the cosmic baryon fraction. Future efforts to search for these hooks and bends in real galaxies will provide interesting tests for MOND and ΛCDM.

     
    more » « less
  2. ABSTRACT

    Observed accretion rates onto the Milky Way and other local spirals fall short of that required to sustain star formation for cosmological timescales. A potential avenue for this unseen accretion is a rotating inflow in the volume-filling hot phase ($\sim 10^6\, {\rm K}$) of the circumgalactic medium (CGM), as suggested by some cosmological simulations. Using hydrodynamic simulations and a new analytic solution valid in the slow-rotation limit, we show that a hot inflow spins up as it approaches the galaxy, while remaining hot, subsonic, and quasi-spherical. Within the radius of angular momentum support ($\sim 15\, {\rm kpc}$ for the Milky Way) the hot flow flattens into a disc geometry and then cools from $\sim 10^6$ to $\sim 10^4\, {\rm K}$ at the disc–halo interface. Cooling affects all hot gas, rather than just a subset of individual gas clouds, implying that accretion via hot inflows does not rely on local thermal instability in contrast with ‘precipitation’ models for galaxy accretion. Prior to cooling and accretion the inflow completes ≈tcool/tff radians of rotation, where tcool/tff is the cooling time to free-fall time ratio in hot gas immediately outside the galaxy. The ratio tcool/tff may thus govern the development of turbulence and enhancement of magnetic fields in gas accreting onto low-redshift spirals. We show that if rotating hot inflows are common in Milky-Way-size disc galaxies, as predicted, then signatures of the expected hot gas rotation profile should be observable with X-ray telescopes and fast radio burst surveys.

     
    more » « less
  3. ABSTRACT

    We introduce an analytic surface density profile for dark matter haloes that accurately reproduces the structure of simulated haloes of mass Mvir = 107–1011 M⊙, making it useful for modelling line-of-sight (LOS) perturbers in strong gravitational lensing models. The two-parameter function has an analytic deflection potential and is more accurate than the projected Navarro, Frenk, and White profile commonly adopted at this mass scale for perturbers, especially at the small radii of most relevant for lensing perturbations. Using a characteristic radius, R−1, where the log slope of surface density is equal to −1, and an associated surface density, Σ−1, we can represent the expected lensing signal from LOS haloes statistically, for an ensemble of halo orientations, using a distribution of projected concentration parameters, $\mathcal {C}_{\rm vir} := r_{\rm vir}/ R_{-1}$. Though an individual halo can have a projected concentration that varies with orientation with respect to the observer, the range of projected concentrations correlates with the usual three-dimensional halo concentration in a way that enables ease of use.

     
    more » « less
  4. Abstract

    We study how supersonic streaming velocities of baryons relative to dark matter—a large-scale effect imprinted at recombination and coherent over ∼3 Mpc scales—affect the formation of dwarf galaxies atz≳ 5. We perform cosmological hydrodynamic simulations, including and excluding streaming velocities, in regions centered on halos withMvir(z= 0) ≈ 1010M; the simulations are part of the Feedback In Realistic Environments (FIRE) project and run with FIRE-3 physics. Our simulations comprise many thousands of systems with halo masses betweenMvir= 2 × 105Mand 2 × 109Min the redshift rangez= 20–5. A few hundred of these galaxies form stars and have stellar masses ranging from 100 to 107M. While star formation is globally delayed by approximately 50 Myr in the streaming relative to nonstreaming simulations and the number of luminous galaxies is correspondingly suppressed at high redshift in the streaming runs, these effects decay with time. Byz= 5, the properties of the simulated galaxies are nearly identical in the streaming versus nonstreaming runs, indicating that any effects of streaming velocities on the properties of galaxies at the mass scale of classical dwarfs and larger do not persist toz= 0.

     
    more » « less
  5. We present an approach to selectively examine an asymmetric potential in the buried layer of solar cell devices by means of nonlinear x-ray spectroscopy. Detecting second harmonic generation signals while resonant to the SiO2 core level, we directly observe existence of the band bending effect in the SiO2 nanolayer, buried in the heterostructures of Al/LiF/SiO2/Si, TiO2/SiO2/Si, and Al2O3/SiO2/Si. The results demonstrate high sensitivity of the method to the asymmetric potential that determines performance of functional materials for photovoltaics or other optoelectronic devices.

     
    more » « less
    Free, publicly-accessible full text available July 17, 2024
  6. ABSTRACT We introduce a suite of cosmological volume simulations to study the evolution of galaxies as part of the Feedback in Realistic Environments project. FIREbox, the principal simulation of the present suite, provides a representative sample of galaxies (∼1000 galaxies with $M_{\rm star}\gt 10^8\, M_\odot$ at z  = 0) at a resolution ($\Delta {}x\sim {}20\, {\rm pc}$ , $m_{\rm b}\sim {}6\times {}10^4\, M_\odot$ ) comparable to state-of-the-art galaxy zoom-in simulations. FIREbox captures the multiphase nature of the interstellar medium in a fully cosmological setting (L = 22.1 Mpc) thanks to its exceptionally high dynamic range (≳106) and the inclusion of multichannel stellar feedback. Here, we focus on validating the simulation predictions by comparing to observational data. We find that star formation rates, gas masses, and metallicities of simulated galaxies with $M_{\rm star}\lt 10^{10.5-11}\, M_\odot$ broadly agree with observations. These galaxy scaling relations extend to low masses ($M_{\rm star}\sim {}10^7\, M_\odot$ ) and follow a (broken) power-law relationship. Also reproduced are the evolution of the cosmic HI density and the HI column density distribution at z ∼ 0–5. At low z , FIREbox predicts a peak in the stellar-mass–halo-mass relation but also a higher abundance of massive galaxies and a higher cosmic star formation rate density than observed, showing that stellar feedback alone is insufficient to reproduce the properties of massive galaxies at late times. Given its high resolution and sample size, FIREbox offers a baseline prediction of galaxy formation theory in a ΛCDM Universe while also highlighting modelling challenges to be addressed in next-generation galaxy simulations. 
    more » « less
    Free, publicly-accessible full text available May 2, 2024
  7. ABSTRACT

    We investigate the formation of Milky Way–mass galaxies using FIRE-2 ΛCDM cosmological zoom-in simulations by studying the orbital evolution of stars formed in the main progenitor of the galaxy, from birth to the present day. We classify in situ stars as isotropic spheroid, thick-disc, and thin-disc according to their orbital circularities and show that these components are assembled in a time-ordered sequence from early to late times, respectively. All simulated galaxies experience an early phase of bursty star formation that transitions to a late-time steady phase. This transition coincides with the time that the inner CGM virializes. During the early bursty phase, galaxies have irregular morphologies and new stars are born on radial orbits; these stars evolve into an isotropic spheroidal population today. The bulk of thick-disc stars form at intermediate times, during a clumpy-disc ‘spin-up’ phase, slightly later than the peak of spheroid formation. At late times, once the CGM virializes and star formation ‘cools down,’ stars are born on circular orbits within a narrow plane. Those stars mostly inhabit thin discs today. Broadly speaking, stars with disc-like or spheroid-like orbits today were born that way. Mergers on to discs and secular processes do affect kinematics in our simulations, but play only secondary roles in populating thick-disc and in situ spheroid populations at z = 0. The age distributions of spheroid, thick disc, and thin disc populations scale self-similarly with the steady-phase transition time, which suggests that morphological age dating can be linked to the CGM virialization time in galaxies.

     
    more » « less
  8. ABSTRACT

    We explore the properties of Milky Way (MW) subhaloes in self-interacting dark matter models for moderate cross-sections of 1–5 cm2 g−1 using high-resolution zoom-in N-body simulations. We include the gravitational potential of a baryonic disc and bulge matched to the MW, which is critical for getting accurate predictions. The predicted number and distribution of subhaloes within the host halo are similar for 1 and 5 cm2 g−1 models, and they agree with observations of MW satellite galaxies only if subhaloes with peak circular velocity over all time >7 km s−1 are able to form galaxies. We do not find distinctive signatures in the pericentre distribution of the subhaloes that could help distinguish the models. Using an analytical model to extend the simulation results, we are able to show that subhaloes in models with cross-sections between 1 and 5 cm2 g−1 are not dense enough to match the densest ultrafaint and classical dwarf spheroidal galaxies in the MW. This motivates exploring velocity-dependent cross-sections with values larger than 5 cm2 g−1 at the velocities relevant for the satellites such that core collapse would occur in some of the ultrafaint and classical dwarf spheroidals.

     
    more » « less
  9. ABSTRACT

    We perform cosmological hydrodynamical simulations to study the formation of proto-globular cluster candidates in progenitors of present-day dwarf galaxies $(M_{\rm vir} \approx 10^{10}\, {\rm M}_\odot$ at z = 0) as part of the ‘Feedback in Realistic Environment’ (FIRE) project. Compact (r1/2 < 30 pc), relatively massive (0.5 × 105 ≲ M⋆/M⊙ ≲ 5 × 105), self-bound stellar clusters form at 11 ≳ z ≳ 5 in progenitors with $M_{\rm vir} \approx 10^9\, \mathrm{M}_{\odot }$. Cluster formation is triggered when at least $10^7\, \mathrm{M}_{\odot }$ of dense, turbulent gas reaches $\Sigma _{\rm gas} \approx 10^4\, {\rm M}_\odot \, {\rm pc}^{-2}$ as a result of the compressive effects of supernova feedback or from cloud–cloud collisions. The clusters can survive for $2-3\, {\rm Gyr}$; absent numerical effects, they could possibly survive substantially longer, perhaps to z = 0. The longest lived clusters are those that form at significant distance – several hundreds of pc – from their host galaxy. We therefore predict that globular clusters forming in progenitors of present-day dwarf galaxies will be offset from any pre-existing stars within their host dark matter haloes as opposed to deeply embedded within a well-defined galaxy. Properties of the nascent clusters are consistent with observations of some of the faintest and most compact high-redshift sources in Hubble Space Telescope lensing fields and are at the edge of what will be detectable as point sources in deep imaging of non-lensed fields with JWST. By contrast, the star clusters’ host galaxies will remain undetectable.

     
    more » « less